
deviation of the temperature excess @x(0, 0, 0, Fo) for the three-dimensional case from the 
corresponding quantity in the one-dimensional case~ qo, constant heat flux density inside the 
prescribed square region on the surface of the body; To, initial temperature of the body; 2~, 
length of a side of the square heater; ~,, time corresponding to Fol. 

i. 

2. 

3. 
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SANDWICH PLATE UNDER THERMAL IMPACT 

V. V. Kharitonov, T. A, Starovoitova, 
and ~. I. Starovoitov 

UDC 536.24:534.1 

An expression is obtained for the temperature field and the fluctuations excited 
by a thermal impact are investigated. 

The extensive application of laminated structure elements in industry arouses interest 
in determining the temperature fields therein and in describing their dynamic behavior under 
thermal force action. The vibrations of a circular single-plate excited by a thermal impact 
are considered in the monograph [i]. Similar investigations are performed in this paper for 
sandwich circular plates of nonsymmetrical thickness, assembled from materials with different 
thermophysical and mechanical properties. 

3 
Let us consider an unlimited sandwich plate of thickness h=Ehk (k = i, 2, 3; hx, h= 

are the thicknesses of the outer layers and h, = 2c is the filler thickness), on whose outer 
surface of the heat shielding layer i (z = c + hl) a thermal flux of density qt acts in a 
direction normal to the surface. The outer plane of the carrying layer 2 (z = --c -- h=) is 
assumed heat-insulated. A cylindrical r, ~, z coordinate system is coupled to the filler mid- 
dle surface, and the z axis is directed toward the layer I. Under the mentioned heat-trans- 
fer conditions the temperature field in the k-th layer of the plate 8k(Z , t) = T -- To (To is 
the initial temperature) satisfies the heat conduction equation 

Oh,~ = Oklak,, (i) 

under the initial (t = 0, t is the time) 

and boundary 

ok (z, 0) = o (2) 

conditions. 
the subscript denotes the operation of differentiation with respect to the subsequent coordi- 
nates. 

The solution of the boundary-value problem (i) under the initial (2) and boundary (3) 
condition is executed by an operational method based on the Laplace transform [2]. 

Analysis of the analytical expressions obtained for the temperature fields in each of 
the layers and comparing them with known solutions (for h= = 0 the field for a bilayer plate 
presented in [2] follows, while for hl << hs we obtain the temperature field of a thin coat- 

;%ox,~ = - -  q, (z = c + hO, % = %, X~O,,~ = 7.~0~,,  (z = c), 1 ( 3 )  

02=0~, Ls02, L=La03, z ( Z = - - c ) ,  0~., z = O  (z = "  c - -  h~)J 

Here akt -- Xk/(CktP k) is the thermal diffucivity of the k-th layer, the comma in 
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ing [3].), and the results of the numerical computation on an electronic computer permit rep- 
resentation of the temperature fields in the system under study in the following form with 
accuracy (5-7%) sufficient for engineering practice for our specific conditions (hi = h2 z h3) 

O~(z, t ) --  q t ] / ~ t t  1~+3[ ier f cD, (x )+ier f cD~( - -x )  2 

h~ 2h21 ] 
-t/~ltl 3 ] /~a l t t  + ~,-{3 [ierfc D2 (x) + ierfc D~ ( - -  x) - -  

x 
- -  ierfc D~ (x) - -  ierfc D,~ ( - -x) ]  + 2  ierfc 

' 2 Va~t t  ' 

4q, Va~t t  / h~ - -  (x - -  2h~) ]/~da~t 
O~ (z, t) ;~a;%+ ]ierfc " 2 ]/a~~t . . . .  + 

3h3 - -  (x - -  2h~) "l/a~t/a~ t h~ + x ]/a~t/a~, 3h3 + x T/ a~t/a~t ) 
+ ierfc 2 -Va~tt + ierfc 2 q / a T t  ~- ierfc ' 't ' 

2 v g T t  

2qt V~ l t t  ~ 4h a - -  x 6h a + x 
03 tz, t) tierfc + ierfc 

2 ] /a-~/  2 ] /a-~f 

2h z + x 1 x x z ) 
- -  ierfc -- I " 

2 "Va~tt ]/'~" 4 ]/a-~t/ 12 ]/-~al, t [ -  

(~) 

Her e 

V a~t ; x = - - z + h ~ + c ;  

D, ( •  x) = 4h3 q / ~  -- (2h~ -4- x) . 02 (4- x) = 
2 VaSVt  ' - 

_-- 6h. a Vallt/aat + 2]21 ++__ X ," Dz (+__ x) = 2ha ]/alt/a~t + 2 h l  ~ X . ,  

and ierfc y are functions known in the theory of heat conduction [2, 3]. 

Thermal impact on the surface of a sandwich plate can cause it to vibrate. For a circu- 
lar plate we introduce an assumption about the heat insulation of its outline, which permits 
description of the temperature field therein by using (4). 

We take geometric hypotheses in conformity with the E. I. Grigolyuk model [4]: the Kirch- 
hoff assumptions are valid in the carrying layers, while the deformed normal remains recti- 
linear a~d incompressible in the stiff filler. In this case the radial displacements in the 
layers Ur can be expressed in terms of three unknown functions: u(r, t) is the radial dis- 
placement of the coordinate plane, @(r, t) is shear in tb.e filler, and w(r, t) is deflection 
of the plate 

u~" = u + c ~ - - z w , r ;  u~ ~-~ = u - - c , - -  zwr;  u!~ == u + z , - -  z~,r. (5) 

T h e r e  a r e  no t a n g e n t i a l  d i s p l a c e m e n t s  b e c a u s e  o f  t h e  a x i a l  symmet ry  o f  t h e  p r o b l e m .  

The d e f o r m a t i o n  c o m p o n e n t s  a r e  d e t e r m i n e d  f rom t h e  known f o r m u l a s  

e k =  u h �9 e k =  ukfr . 2e(a)~_~. (6)  r r , r  ~ ~ 'r I ~ rz 

The stress connection to the strain is described by thermoelasticity relations 

s~k == 2Ol~gh~ ; ah = 3K1, (ek- -  c * z 0 h ) ; ,  s~) = O3~? (a = r, ~). (7)  

Here  a k i s  t h e  c o e f f i c i e n t  o f  l i n e a r  t e m p e r a t u r e  e l o n g a t i o n .  
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The theorem of the minimum of the potential strain energy is used in deriving the equa- 
tion of plate motion. Its variation has the form 

== rz "rz d z  ) rdrd% 
a , k  h h h,  

Later, as in [5], the relative smallness of the filler shear modulus 
upon the work of the tangential stress o~) in (8) can be neglected, which equals 2cGa~. 
general form of the equations of motion in generalized internal forces and moments agrees 
with the traditional form for laminar plates [5, 6]. 

Use of the relationship (5)-(7) permits reducing the equation of motion in the form 

L ~ ( a l u + a 2 r  L 2 ( a ~ u - k - a ~ - - - a s w , ~ ) = O ;  

L a ( a a u + % * - - % w , ~ ) - - M o r ~ w = O .  

(8) 

Ga<<Gl, G2 is used, where- 
The 

(9 )  

The initial motion conditions are 

w(r ,  O)--=0; ~,(r, 0 ) =  O; O(z, O ) =  O. ( l O )  

Hinge-support over the plate boundary contour with the presence of a stiff diaphragm 
preventing the relative shear of the layers at the endplate is taken as boundary conditions 

Mr ~ azu,r "}- a~),r  ~ a6W,rr - -  a~oW,/r - -  M t  = 0; u = l p = w ~ 0  ( r =  1). ( 1 1 )  

Here and henceforth, the geometric parameters and linear coordinates are referred to the plate 
radius ro 

L~ (u) -~- ((ru),dr), ~ ~-  u , .  %- u ~/r --u/r2; 

La (u) -~- (rL= (u ) ) , / r  --- u ,~ .  + 2 u , . / r  - -  u, /r2;  

3 

a~ = X hkKh~ a~ = c (hlKla + ho.K.zo); aa = h~ (c + h~/2) Kxa -- 
h = l  

- -  t h (c + hd2  ) Ko.a; a~ = c 2 (h~Kla + h2K2a + haKao/3); 

a~ = c (h 1 (c + hal2 ) Klo + ha (c + hd2)  K~o + 2c2K~o/3); 

aB = h~ (c 2 + ch~ + h2z/3) K,a + h~(c 2 + ch 2 + hg/3) K2a + 2c3K3o/3; 

aea = a6 {(Kk - -  2/3Gh) - +  Kho} ; Kha = Kh -J- 4/3Gh; 
3 3 

M,--3 2; f Mo = ,v 
k = l  h k k = l  

where Ok is the density of the material of the k-th layer. 

After integration by parts and evident manipulation, the system (9) is reduced to the 
form 

U :  blw,r + C1 r + C2/r; ~ = b~w,r + Car + CJr;  La(w,r ) + M ~ w = O ,  ( 1 2 )  

where 

bl = (asa~ - -  a,_as)/(aLa~ - -  a~); b~ = (alas --aza3)/(axa~ - -  a]); 

M ~ = ,  Mor2oat (ala~ - -  a~) 

(alao - -  a~)(alai - -  a]) - -  (ala~ - -  a2aa)" " 

Because of the continuity of the desired solution at the origin for solid plates, it is 
necessary to set Ca = C~ = 0. There follows from the condition (ii) on the boundary 

C 1 = - - .  blw,r; C a = - -  b~w,r (r = 1), 

which permits obtaining a boundary condition for the deflection 

W = O; aTW,r r -]-- asw,~ + M t = 0 (r =- 1); (13) 

a7 --= a~,o - -  bxao~ - -  b2as; a8 = a6o + b~a~ + b2as. 
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We represent the solution of 
a dynamic part 

~ ~'s @ ~d" 

The q u a s i s t a t i e  d e f l e c t i o n  s a t i s f i e s  t h e  e q u a t i o n  

L3(Ws,r) = 0 

for the boundary conditions 

For a solid plate 

(12) in the form of the sum of quasistatic deflection and 

(14) 

w~ = O; aTw~,~ r + asw,r  + Me = 0 (r  = 1). 

M~ ( 1 - -  r ~) 
w~ - ( 1 5 )  

2 (aT+as )  

S u b s t i t u t i n g  t h e  s o l u t i o n  (14) i n t o  (11) and t h e  c o n d i t i o n s  (10) and (13) and t a k i n g  
account of the expression (15), we obtain an equation to determine the dynamic part of the 

deflection 

~4~ (1 -- rD 

2 (aT -F as) 
Mt (16) 

�9 1 - -  r ~ 
Mr; w ~ - - - - -  M~ (t = 0); 

2 (aT + as) 2 (aT -1- as) 

L~ (we,r) + M~;,t -- 

under the initial and boundary conditions 

I -- r 2 

(17) 

wd = O; aTwd,~,. + aswd,~ = 0 (r  = 1). 

Let us first examine the homogeneous differential equation corresponding to (16). Its 

solution is assumed in the form 

w ~ = v (r) (A cos o)t + B sin ~t). (18) 

A f t e r  s u b s t i t u t i n g  (18) in  t h i s  homogeneous  e q u a t i o n ,  we o b t a i n  a d i f f e r e n t i a l  e q u a t i o n  to  
d e t e r m i n e  t h e  f u n c t i o n  v ( r ) :  

L3 (v,r) - -  ~ v  ---- 0; ~ = ~ZM~. (19) 

Tak ing  a c c o u n t  o f  b o u n d e d n e s s  a t  t h e  o r i g i n ,  t h e  s o l u t i o n  o f  (19) i s  t h e  f o l l o w i n g  

v --- Cflo (fir) -t- C j o  (~r). (20) 

Here Jo, Io are zero-order Bessel function of the first kind of real and imaginary arguments. 
Substituting (20) into the boundary conditions (17) and requiring the solution of the obtained 
system of equations in the constants of integration C,, C2 not be trivial, we obtain a trans- 
cendental equation to determine the eigennumbers B n" 

Jo (~) [a, (Rio (~) - -  I~ (8)) + asll (~)l + It ([~) [a7 (~Jo (~) - -  J, ( O ) ) + a j 1  (~)1. (21) 

The n a t u r a l  v i b r a t i o n s  f r e q u e n c i e s  a r e  a f t e r w a r d s  d e t e r m i n e d  f rom t h e  f o r m u l a  

co,, =: ~ / M  ~. (22), 

An o r t h o n o r m a l i z e d  s y s t e m  o f  e i g e n f u n c t i o n s  v = V(Sn r )  
n 

v,, = ~ 4(~, ,)  

i s  i n t r o d u c e d  to  d e s c r i b e  t h e  dynamic  p a r t  o f  t h e  d e f l e c t i o n  of  t h e  s y s t e m  unde r  i n v e s t i g a -  
t i o n ,  The n o r m a l i z i n g  f a c t o r  dn i s  d e t e r m i n e d  f rom the  r e q u i r e m e n t  o f  o r t h o n o r m a l i t y  o f  t h e  
s y s t e m  v n 

dj, - [ J0 (~,,r) 4 (~,,) 4 (~.r) rdr = -- [J1 (~,,) + / ~  (~.)] + - -  J, (~n) + ~ J0 (~ )  �9 
/ , , ( I L )  2 1~,, ,_ " 4 ( I L )  b' 

The desired deflection w d that satisfies the inhomogeneous equation (16) is represented by 
using a series expansion in a functional system of functions (23): 
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L:'d ~ ,, 
tl 0 

(24) 

Substituting this series into (16) and the conditions (17) and taking (19) into account, mul- 
tiplying the terms of the equation by vnrdr and integrating with respect to r between zero 
and one, we obtain an equation for qn 

qo27to]q, , -  1(~.) M, (25) 
2(a727as) 

under the conditions 

qo = - -  ! @.) 

2 (a 7 27 as) 
Mr(0); q o -  ;(Po) NIt(0) (t == 0). (26) 

2 (aT 27 as) 
Here 

l([~n) = ~I (1--r"qvnrdr-- pT~ Jl(~n) 
o d,,p~ 

]0(~n)J~ ll(~n)) 27 2J0(~o)S2,_,(~,J + S,(f~o)S,~,o(~n) ]', (27) 

when SU,v are Lommel functions. 

The solution of the equation can be written down in the form 

qo it) = Ao cos toot + Bo sin to,J I (~ o) sin [(% (t - -  z)lMt (~) dr. 
2 (a 7 + as) to. 

The constants of integration An, B n are determined from the initial conditions (26): 

An - ; (p") M, (0); Bo = I (~o) NI, (0). 
2 (a 7 + as) 2 (a7 27 as) to,~ 

The quasistatic deflection (15) can be expanded in a series of eigenfunctions v n" 

~ ~ Mt . ~ 
2 (a7 27 as) - -  I (p~,) vn, 

n ~ 0  

where  I(Bn) i s  d e f i n e d  by (27) .  

We o b t a i n  t h e  t o t a l  dynamic d e f l e c t i o n  of  the  p l a t e  by summing (24) and (30 ) :  

(qo+ M, 
,,=0 2 (a 7 27 as) 

The radial displacements and shear follow from the relationships (12): 

co 

n:=O 

M,I (Pn) ) + 
2 (aT 27 an) 

CIG 

(28) 

(29) 

(30) 

(31) 

TABLE I. Eigennumbers of Equation (21) 

2,525 
2,655 
5,585 
5,645 
8,G95 
8,735 

11,825 
11,855 
14,955 
1,1,975 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

18,0k5 
18,115 
21,225 
21,245 
24,365 
24,385 
27,505 
27,515 
30,6,t5 
30,655 
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O)o{o/r s o a]d t 
o,s o,a 

q2 qz 

o,I qt 

o o 

-o,t -r 

-& -qz 

/go&/ 

b 

Fig. i. Dependence of the ratio between the dynamic component of 
the deflection Wdn and the quasistatic component Wsn on the dimen- 
sionless t~me z = (a,tt)/h 2 for fundamental tone vibrations fre- 
quencies: a) n = 0 (moro = 585.3 m/see); b) n = 1 (~,ro = 647.1 
m/see ) .  

~o ( Mtl (~") )+c3r" ----- b~ v,~,~ q" -it- 2 (aT -F as) (32) 

Here qn is determined by (28) with (29) taken into account: 

f;~ [ Jl(f;,,r)-} J~ 
v . . . . .  - - - -  - -  d j "  Io(~.) 

{(71, Ca} = {01, 02} ~ ~ n  jl(~n)_j c - - / l ( ~ n )  q~.--I- 
~o  d~ I o (~,,) 

MJ (1~.) ]. 
2 (aT + as) 

Therefore, the functions describing the vibrations of a sandwich plate under thermal im- 
pact are determined by (31) and (32). 

Numerical results were obtained on an ES-I022 electronic computer for a sandwich plate 
whose heat shielding layer is from cordierite, the filler from a fluoroplastic, and the carry- 
ing layers from DI6T aluminum alloy. The thermophysical and elastic characteristics of the 
materials mentioned were determined from known experimental data [7-9]. 

The transcendental equation (21) for the eigennumbers was investigated in a 0-50 inter- 
val. Thirty-two roots were obtained. The first 20, calculated to 0.005 accuracy, are pre- 
sented in Table i. They correspond to the layer geometric parameters hs = i0, h, = 20, ha = 
0.05 and grown as the total layer thicknesses grow. Their corresponding frequencies ~nro (m/ 
sec) vary between the limits 585-86,270. The ratio between the deflection dynamic (24) and 
quasistatic components for the first two frequencies are represented in the figure as a func- 
tion of the dimensionless time. The extremal splashes of the ratio corresponding to the func- 
tional tone frequency ~oro are compensated partially in the region T = 2 upon summing the 
series (31) by means of its dual frequency e,ro. For �9 > 5 the amplitude of the vibrations 
diminishes gradually. 

Investigation of the temperature field im the inner carrying layer showed that it can be 
assumed constant for relatively thin layers h2 <<hs. 

NOTATION 

r,~ , z, cylindrical coordinate system; qt, heat flux; T, temperature, t, time; 
%k, Ckt, akt, heat conduction, specific heat, and thermal diffusivity of the k-th layer; Pk, 
density; k, layer number; hk, layer thickness; ro, plate radius; uS, radial displacements in 
the layers; u, radial displacements of the filler middle plane; ~, shear in the filler; w, 
plate deflection; Wd, Ws, dynamic and quasistatic deflection components~ Gk, Kk, shear and 
bulk deformation moduli', o ka, cka, stress and strain tensor components; on, ea,k global parts 
of the stress and strain tensors; N, strain potential energy; Mr, radial generalized moment; 
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Mt, temperature component of the generalized moment; L2, L3, linear differential operators; 
Bn, eigennumbers; Vn, orthonormalized eigenfunctions; and ~n, natural vibrations frequencies. 
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